Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Pharmaceutics ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543235

RESUMO

Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid.

2.
Int J Nanomedicine ; 19: 429-440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38260242

RESUMO

Background: Epithelial ovarian cancer is associated with high mortality due to diagnosis at later stages associated with peritoneal involvement. Several trials have evaluated the effect of intraperitoneal treatment. In this preclinical study, we report the efficacy, pharmacokinetics and pharmacodynamics of intraperitoneal treatment with two approved nanomolecular formulations of paclitaxel (nab-PTX and mic-PTX) in a murine ovarian cancer xenograft model. Methods: IC50 was determined in vitro on three ovarian cancer cell lines (OVCAR-3, SK-OV-3 and SK-OV-3-Luc IP1). EOC xenografts were achieved using a modified subperitoneal implantation technique. Drug treatment was initiated 2 weeks after engraftment, and tumor volume and survival were assessed. Pharmacokinetics and drug distribution effects were assessed using UHPLC-MS/MS and MALDI imaging mass spectrometry, respectively. Pharmacodynamic effects were analyzed using immunohistochemistry and transmission electron microscopy using standard protocols. Results: We demonstrated sub-micromolar IC50 concentrations for both formulations on three EOC cancer cell lines in vitro. Furthermore, IP administration of nab-PTX or mic-PTX lead to more than 2-fold longer survival compared to a control treatment of IP saline administration (30 days in controls, 66 days in nab-PTX treated animals, and 76 days in mic-PTX animals, respectively). We observed higher tissue uptake of drug following nab-PTX administration when compared to mic-PTX, with highest uptake after 4 hours post-treatment, and confirmed this lower uptake of mic-PTX using HPLC on digested tumor samples. Furthermore, apoptosis was not increased in tumor implants up to 24h post-treatment. Conclusion: Intraperitoneal administration of both nab-PTX and mic-PTX results in a significant anticancer efficacy and survival benefit in a mouse OC xenograft model.


Assuntos
Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Xenoenxertos , Apoptose , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Modelos Animais de Doenças
3.
ACS Appl Mater Interfaces ; 15(42): 49022-49034, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819736

RESUMO

Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.


Assuntos
Dióxido de Carbono , Neoplasias Peritoneais , Animais , Humanos , Neoplasias Peritoneais/tratamento farmacológico , Hidrogéis/química , Polímeros/química , Concentração de Íons de Hidrogênio
4.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630976

RESUMO

The present study aimed to develop 3D printed dosage forms, using custom-made filaments loaded with diclofenac sodium (DS). The printed tablets were developed by implementing a quality by design (QbD) approach. Filaments with adequate FDM 3D printing characteristics were produced via hot melt extrusion (HME). Their formulation included DS as active substance, polyvinyl alcohol (PVA) as a polymer, different types of plasticisers (mannitol, erythritol, isomalt, maltodextrin and PEG) and superdisintegrants (crospovidone and croscarmellose sodium). The physicochemical and mechanical properties of the extruded filaments were investigated through differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile measurements. In addition, cylindrical-shaped and tubular-shaped 3D dosage forms were printed, and their dissolution behaviour was assessed via various drug release kinetic models. DSC and XRD results demonstrated the amorphous dispersion of DS into the polymeric filaments. Moreover, the 3D printed tablets, regardless of their composition, exhibited a DS release of nearly 90% after 45 min at pH 6.8, while their release behaviour was effectively described by the Korsmeyer-Peppas model. Notably, the novel tube design, which was anticipated to increase the drug release rate, proved the opposite based on the in vitro dissolution study results. Additionally, the use of crospovidone increased DS release rate, whereas croscarmellose sodium decreased it.

5.
J Control Release ; 362: 268-277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648083

RESUMO

In this work, the feasibility of ultra-high drug loaded amorphous solid dispersions (ASDs) for the poorly soluble itraconazole, mebendazole and celecoxib via solvent electrospinning in combination with poly(2-ethyl-2-oxazoline) and fenofibrate in combination with polyvinylpyrrolidone is demonstrated. By lowering the polymer concentration in the electrospinning solution below its individual spinnable limit, ASDs with a drug content of up to 80 wt% are obtained. This is attributed to drug-polymer interactions not being limited by default to hydrogen bonds, as also Van der Waals interactions can result in high drug loadings. The theoretically predicted miscibility by the Flory-Huggins theory is corroborated by the experimental findings based on (modulated) differential scanning calorimetry and x-ray diffraction. Globally, the maximally obtained amorphous drug loadings are higher compared to the loadings found in literature. Additionally, non-sink dissolution tests demonstrate an increase in solubility of up to 50 times compared to their crystalline counterparts. Moreover, due to the lack of precipitation biocompatible PEtOx succeeds in stabilizing the dissolved drug and inhibiting its instant precipitation. The current work thus demonstrates the broader applicability of the electrospinning technique for the production of physically stable ASDs with ultra-high drug loadings, a result which has been validated for several Biopharmaceutics Classification System class II drugs.

6.
Int J Pharm ; 643: 123264, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488059

RESUMO

The effect of particle size on the sublimation behavior of butylhydroxytoluene (BHT) was investigated when BHT was included as antioxidant in tablets. Sublimation of pure BHT was found to be independent of its particle size, with pore formation on the surface of all tablets after storage at room temperature and above. Moreover, a higher residual BHT content after storage was detected in tablets containing a larger size fraction. X-ray µCT scans revealed the formation of peripherally larger pores at higher BHT particle sizes, implying a slower sublimation rate in the tablet core. A stability study indicated an increase in the extent of BHT sublimation at higher temperature and longer exposure time for all size fractions. The influence of BHT particle size was more pronounced when the tablets were stored at higher temperature, but the effect receded with longer exposure time. Similar trends were seen in film-coated tablets. Due to the short exposure time to elevated temperatures, a gradient in pore size was also observed at smaller particle sizes, with peripheral pores being larger in uncoated tablets. Superficial pores disappeared when a film coating was deposited onto the tablets. After storage of the film-coated tablets, less BHT had sublimated compared to the uncoated tablet. The coating layer did not prevent sublimation, but the process was slowed down.


Assuntos
Antioxidantes , Hidroxitolueno Butilado , Tamanho da Partícula , Comprimidos , Comprimidos com Revestimento Entérico
7.
Macromol Biosci ; 23(10): e2300016, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37243584

RESUMO

To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.

8.
Int J Pharm ; 637: 122854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36948473

RESUMO

The present work studied the influence of different formulation variables (defined also as factors), namely, different polymers (HPC EF, PVA and HPMC-AS LG), drugs with different water solubilities (paracetamol, hydrochlorothiazide and celecoxib) and drug loads (10 or 30 %) on their processability by HME and FDM. Both filaments and tablets were characterized for physic and chemical properties (DSC, XRPD, FTIR) and performance properties (drug content, in vitro drug release). Experiments were designed to highlight relationships between the 3 factors selected and the mechanical properties of filaments, tablet mass and dissolution profiles of the model drugs from printed tablets. While the combination of hydrochlorothiazide and HPMC-AS LG could not be extruded, the combination of paracetamol with HPC EF turned the filaments too ductile and not stiff enough hampering the process of printing. All other polymer and drug combinations could be successfully extruded and printed. Models reflected the influence of the solubility of the drug considered but not the drug load in formulations. The ranking of the drug release rates was in good agreement with their solubilities. Furthermore, PVA presenting the fastest swelling rate, promoted the fastest drugs' releases in comparison with the other polymers studied. Overall, the study enabled the identification of the key factors affecting the properties of printed tablets, with the proposal of a model that has valued the relative contribution of each factor to the overall performance of tablets.


Assuntos
Acetaminofen , Polímeros , Comprimidos/química , Liberação Controlada de Fármacos , Solubilidade , Polímeros/química , Impressão Tridimensional , Tecnologia Farmacêutica
9.
Pharmaceutics ; 15(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839860

RESUMO

Diazepam (DZP) is a long-acting benzodiazepine to treat anxiety or acute alcohol withdrawal. Although this class of drugs should be taken for a short period of time, many patients take them for longer than recommended, which has been linked to an increased risk of dementia and dependence. The present work aimed at using the dual-nozzle system of fused deposition modeling (FDM) 3D printers to prepare tablets with gradual doses of DZP with constant mass and size. Placebo and DZP-loaded filaments were prepared by hot-melt extrusion and used to print the bi-compartmental tablets. Thermal processing allowed the conversion of crystalline DZP to its amorphous counterpart. Tablets with different DZP contents were effectively printed with a mass, thickness and diameter average of 111.6 mg, 3.1 mm, and 6.4 mm, respectively. Microscopic data showed good adhesion between the different layers in the printed tablets. The desired drug contents were successfully achieved and were within the acceptance criteria (European Pharmacopeia). The combination of a placebo and drug-loaded extrudates proved to be beneficial in the production of tablets by FDM for patients in need of drug withdrawal.

10.
Int J Pharm ; 633: 122616, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642348

RESUMO

External lubrication is a highly valuable alternative lubrication method as it minimizes the negative impact on tablet properties encountered when using internal lubrication. In current study, experiments were performed with automated external lubrication systems implemented in a compaction simulator and rotary tablet press using three lubricants (magnesium stearate (MgSt), sodium stearyl fumarate (SSF) and glyceryl dibehenate (DBHG)). The effect of process parameters related to the tableting process (main compaction pressure and tableting speed) and external lubrication systems (spraying time, atomizing pressure, dust extraction system and lubricant feed rate) on the responses was studied for a placebo formulation which is non-processable without lubrication. Low and comparable ejection forces were recorded for all lubricants on both tablet presses. No negative effect on tensile strength was observed for process parameters of both external lubrication systems, irrespective of lubricant type. Disintegration times were slightly higher for SSF compared to MgSt and DBHG for the tablets produced on the rotary tablet press, linked to higher lubricant concentrations on the tablets for SSF, while disintegration times were similar for all lubricant types on the compaction simulator. The potential of external lubrication for implementation on production scale tableting equipment and during scale-up was demonstrated for multiple lubricants.


Assuntos
Excipientes , Lubrificantes , Lubrificação , Ácidos Esteáricos , Comprimidos , Resistência à Tração
11.
Int J Pharm ; 632: 122553, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586635

RESUMO

Internal lubrication is associated with decreasing tensile strength and prolonged disintegration. These effects can be minimized using external lubrication. In current study, six lubricants (magnesium stearate, sodium stearyl fumarate, stearic acid, glyceryl dibehenate, poloxamer 188 and sucrose monopalmitate) were processed with an external lubrication system implemented in a compaction simulator. The effect of process parameters related to the tableting process (main compaction pressure and tableting speed) and external lubrication system (spraying time, atomizing pressure and dust extraction system) on the responses was studied for a placebo formulation (80% mannitol - 20% microcrystalline cellulose). Internally lubricated blends (0.75 - 4%) were processed as reference. All lubricants proved successful in reducing ejection forces through external lubrication while yielding substantially lower lubricant concentrations compared to internal lubrication. No negative effect of external lubrication on tensile strength and disintegration time was observed, irrespective of lubricant type. Similar tensile strengths and disintegration times were measured for the different lubricants. This was in contrast to internal lubrication where a decrease in tensile strength and prolonged disintegration was generally observed. Additionally, the lubricant types affected tensile strength and disintegration differently. This study demonstrates the versatility of external lubrication as an alternative lubrication method for production of pharmaceutical tablets.


Assuntos
Lubrificantes , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Lubrificação , Ácidos Esteáricos , Fenômenos Mecânicos , Resistência à Tração , Excipientes , Comprimidos
12.
Pharmaceutics ; 14(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432667

RESUMO

Visualization of the dynamic behavior of pharmaceutical dosage forms during the dissolution process offers a better understanding of the drug release mechanism, enabling the design of customized dosage forms. In this study, an X-ray tomography-based approach is proposed to monitor and analyze the dynamics of the structure at the pore scale level during the dissolution process. A flow-through cell dissolution apparatus was developed, capable of mimicking the standard in vitro dissolution process, which can be easily positioned in an X-ray tomography setup. The method was utilized to study the dissolution of a Capa® (polycaprolactone)-based sustained-release 3D printed tablet. The impact of the flow rate on the active pharmaceutical ingredient (API) release rate was studied and 16 mL/min was selected as a suitable flow rate. Furthermore, cesium chloride (CsCl) was used as a contrast agent to increase the contrast between the sample and the dissolution medium. Data obtained with this novel technique were in a good agreement with the released drug rate acquired by the standard in vitro dissolution test (the similarity factor (f2) = 77%). Finally, the proposed approach allowed visualizing the internal structure of the sample, as well as real-time tracking of solution ingress into the product.

13.
J Control Release ; 351: 123-136, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122898

RESUMO

In this work, an important step is taken towards the bioavailability improvement of poorly water-soluble drugs, such as flubendazole (Flu), posing a challenge in the current development of many novel oral-administrable therapeutics. Solvent electrospinning of a solution of the drug and poly (2-ethyl-2-oxazoline) (PEtOx) is demonstrated to be a viable strategy to produce stable nanofibrous amorphous solid dispersions (ASDs) with ultrahigh drug-loadings (up to 55 wt% Flu) and long-term stability (at least one year). Importantly, at such high drug loadings, the concentration of the polymer in the electrospinning solution has to be lowered below the concentration where it can be spun in absence of the drug as the interactions between the polymer and the drug result in increased solution viscosity. A combination of experimental analysis and molecular dynamics simulations revealed that this formulation strategy provides strong, dominant and highly stable hydrogen bonds between the polymer and the drug, which is crucial to obtain the high drug-loadings and to preserve the long-term amorphous character of the ASDs upon storage. In vitro drug release studies confirm the remarkable potential of this electrospinning formulation strategy by significantly increased drug solubility values and dissolution rates (respectively tripled and quadrupled compared to the crystalline drug), even after storing the formulation for one year.


Assuntos
Mebendazol , Polímeros , Solubilidade , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos
14.
Mater Today Bio ; 16: 100414, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36133793

RESUMO

Sustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)). Different PAOx grades were synthesized and purified by the Supramolecular Chemistry Group, and the effect of PAOx grade and processing technique on the in vitro release kinetics was evaluated. Using the hydrophobic poly (2-n-propyl-2-oxazoline) (P n PrOx) as a matrix excipient allowed to sustain the release of different APIs, even at a 70% (w/w) drug load. Whereas complete THA release was not achieved from the P n PrOx matrix over 24 â€‹h regardless of the processing technique, adding 7.5% w/w of the hydrophilic poly (2-ethyl-2-oxazoline) to the hydrophobic P n PrOx matrix significantly increased THA release, highlighting the relevance of mixing different PAOx grades. In addition, it was demonstrated that the release of THA was similar from co-polymer and polymer mixtures with the same polymer ratios. On the other hand, as the release of MTF from a P n PrOx matrix was fast, the more hydrophobic poly (2-sec-butyl-2-oxazoline) (P sec BuOx) was used to retard MTF release. In addition, a mixture between the hydrophilic PEtOx and the hydrophobic P sec BuOx allowed accurate tuning of the release of MTF formulations. Finally, it was demonstrated that PAOx also showed a high ability to tune the in vivo release. IM tablets containing 70% MTF and 30% P sec BuOx showed a lower in vivo bioavailability compared to IM tablets containing a low PEtOx concentration (7.5%, w/w) in combination with P sec BuOx (22.5%, w/w). Importantly, the in vivo MTF blood level from the sustained release tablets correlated well with the in vitro release profiles. In general, this work demonstrates that PAOx polymers offer a versatile formulation platform to adjust the release rate of different APIs, enabling sustained release from tablets with up to 70% w/w drug loading.

15.
Int J Pharm ; 624: 122012, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35839984

RESUMO

Internal lubrication with magnesium stearate (MgSt) is associated with a reduced tensile strength and prolonged disintegration and dissolution times. In the current study, alternative lubricants to MgSt were compared with regard to lubrication efficacy and their impact on tablet properties. The lubricants were combined in different concentrations (0.5-5% w/w) with three fillers (lactose, mannitol and microcrystalline cellulose (MCC)). The high lubrication efficiency of MgSt was associated with the highest reduction of tensile strength. The micronized stearic acid (SA) grades proved good alternatives as they showed a good lubrication efficiency in combination with a limited negative effect on tensile strength. The hydrophobic lubricants (e.g., MgSt and SA) did not prolong disintegration. In contrast, delayed disintegration was observed for sucrose monopalmitate combined with all three fillers and for several other hydrophilic lubricants (sodium lauryl sulfate, poloxamers 188 and P407) combined with MCC. These unexpected findings were explained by the competition-for-water hypothesis. The potential of alternative lubricants to MgSt was demonstrated in this study. Nevertheless, the impact of lubricant addition on process and tablet quality depended on lubricant (type and concentration) and formulation (lubrication need, deformation mechanism and disintegration behavior) properties. Therefore, lubricant selection should be carefully considered in formulation development.


Assuntos
Lubrificantes , Ácidos Esteáricos , Excipientes/química , Lactose/química , Lubrificantes/química , Lubrificação , Ácidos Esteáricos/química , Comprimidos , Resistência à Tração
16.
Pharmaceutics ; 14(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35890261

RESUMO

Bacterial infections are a serious healthcare complication in orthopedic and trauma surgery worldwide. Compared to systemic, local antibiotic prophylaxis has been shown to provide a higher antibiotic dose and bioavailability at the bone site with minimum toxic effects. However, there are still not enough biomaterial and antibiotic combinations available for personalized implant sizes for patients. The aim of this study was to develop a bone fixation plate coating made of a composite of poly-ε-caprolactone, hydroxyapatite and halloysite nanotubes loaded with gentamicin sulphate and fabricated via fused filament fabrication 3D printing technology. The mechanical and thermal properties of the biomaterial were analyzed. The in vitro release kinetics of gentamicin sulphate were evaluated for 14 days showing a burst release during the first two days that was followed by a sustained release of bactericidal concentrations. The composite loaded with 2 and 5% gentamicin sulphate exhibited complete antimicrobial killing of Staphylococcus aureus in an ex vivo mouse femur fixation plate infection model. Moreover, a fixation plate of the composite loaded with 5% of gentamicin sulphate was able to prevent S. aureus infection in the bone and surrounding tissue in an in vivo mouse bone fixation plate infection model 3 days post-surgery. In conclusion, the newly developed composite material successfully prevented infection in vivo. Additionally, the ability to use fused filament fabrication 3D printing to produce patient-specific implants may provide a wider range of personalized solutions for patients.

17.
Int J Pharm ; 623: 121962, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35764260

RESUMO

The efficient development of robust tableting processes is challenging due to the lack of mechanistic understanding on the impact of raw material properties and process parameters on tablet quality. The experimental determination of the effect of process and formulation parameters on tablet properties and subsequent optimization is labor-intensive, expensive and time-consuming. The combined use of an extensive raw material property database, process simulation tools and multivariate modeling allows more efficient and more optimized development of the direct compression (DC) process. In this study, key material attributes and in-process mechanical properties with a potential effect on tablet processability and tablet properties were identified. In a first step, an extensive characterization of 55 raw materials (over 100 material descriptors) (Van Snick et al., 2018) and 26 formulation blends (31 material descriptors) (Dhondt et al., 2022) was performed. These blends were subsequently compacted on a compaction simulator under multiple process conditions through a design of experiments (DoE) approach. A T-shaped partial least squares (T-PLS) model was established which correlates tablet quality attributes with process settings, raw material properties and blend ratios. During future development of the DC formulation and process for a new active pharmaceutical ingredient (API), this model can then be used to provide a preliminary formulation and compaction process settings as starting point to be further optimized during development trials based on well-defined raw material characteristics and compaction tests. This study hence contributes to a better understanding on the impact of raw material properties and process settings on a DC process and final properties of the produced tablets; and provides a platform allowing a more efficient and more optimized development of a robust tableting process.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos , Análise dos Mínimos Quadrados , Pós , Pressão , Comprimidos
18.
Int J Pharm ; 621: 121801, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526701

RESUMO

This study developed a material and time saving method for powder characterization. Building on an earlier developed raw material property database for use towards development of pharmaceutical dry powder processes, blends were selected in an efficient way to include maximal variability of the underlying raw material dataset. For both raw materials and blends, powder characterization methods were kept to a minimum by selecting the testing methods that described the highest amount of variability in physical powder properties based on principal component analysis (PCA). This method selection was made by identifying the overarching properties described by the principal components of the PCA model. Ring shear testing, powder bed compressibility, bulk/tapped density, helium pycnometry, loss on drying and aeration were identified as the most discriminating characterization techniques from this dataset to detect differences in physical powder properties. This ensured a workload reduction while most of the powder variability that could be detected was still included. The methodology proposed in this paper could be used as a material-saving alternative to the current "Design of Experiment" approach, which will be investigated further for applicability to speed up the development of formulations and processes for new drug products and building an end-to-end predictive platform.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Química Farmacêutica/métodos , Composição de Medicamentos , Desenvolvimento de Medicamentos , Tamanho da Partícula , Pós , Tecnologia Farmacêutica/métodos
19.
J Pharm Sci ; 111(10): 2814-2826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577114

RESUMO

Tablet manufacture by fused deposition modelling (FDM) can be carried out individually (one tablet printed per run) or as a group (i.e., 'multiple printing' in one run) depending on patient's needs. The assessment of the process of printing must take into consideration the precision and the accuracy of the mass and dose of tablets, together with their solid-state properties and drug dissolution behaviour. Different mixtures made of either poly(vinyl alcohol) and paracetamol or hydroxypropylcellulose EF and hydrochlorothiazide were used to evaluate multiple printing of tablets by manufacturing batches of 30 tablets with nozzles of 0.4 and 0.7 mm, in two different printers. Besides testing for mass, drug content, density and dissolution performance, tablets were analysed for their thermal (DSC) and spectroscopic (NIR and FTIR) properties. Low standard deviations around mean values for the different properties measured suggested low intra-batch variability. Statistical analysis of data revealed no significant differences between the batches for most of the properties considered in the study. Inter-batch differences (p<0.05) were observed only for mass of tablets, possibly due to deviation on filament's diameter. The use of a smaller nozzle or a different printer enabled the manufacture of more reproducible tablets within a batch. Multiple printing revealed a significant saving on manufacturing time (>35%) in comparison to individual printing.


Assuntos
Álcool de Polivinil , Tecnologia Farmacêutica , Acetaminofen , Liberação Controlada de Fármacos , Humanos , Hidroclorotiazida , Álcool de Polivinil/química , Impressão Tridimensional , Comprimidos/química , Tecnologia Farmacêutica/métodos
20.
Int J Pharm ; 616: 121562, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35150846

RESUMO

Internal lubrication can be associated with reduced tabletability. Deformation mechanism, lubricant type, lubricant blending time and paddle speed (PS) of the forced feeder are known to be influenceable factors. This study investigated the effect of lubricant blending time and PS of forced feeders on the tensile strength of lubricated microcrystalline cellulose (MCC) and lactose tablets. Magnesium stearate (MgSt), sodium stearyl fumarate (SSF) and stearic acid (SA) were used as lubricants. Tablets were produced on a compaction simulator and a rotary tablet press to investigate lubricant sensitivity during upscaling. Lubricant sensitivity was found higher for MCC compared to lactose which was attributed to the higher plasticity of MCC. The reduction in tensile strength upon lubricant addition followed the order: MgSt > SSF > SA; which could be linked to particle size, specific surface area and particle shape of the lubricants. Although differences in tensile strength were observed between the lubricant types, comparable ejection forces were obtained. The impact of PS on tensile strength was higher compared to lubricant blending time for both tableting machines. A good correlation of tensile strength and lubricant sensitivity between the compaction simulator and rotary tablet press was observed based on the calculation of paddle passes (NPP).


Assuntos
Excipientes , Lubrificantes , Excipientes/química , Lactose/química , Lubrificantes/química , Lubrificação , Ácidos Esteáricos/química , Comprimidos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...